Saturday, 5 February 2022

Synchronization of rumen degradable protein with non-fiber carbohydrate on microbial protein synthesis and dairy ration digestibility

Research (Published online: 05-02-2022)
3. Synchronization of rumen degradable protein with non-fiber carbohydrate on microbial protein synthesis and dairy ration digestibility
Annisa Rosmalia, Idat Galih Permana and Despal Despal
Veterinary World, 15(2): 252-261

ABSTRACT

Background and Aim: Dairy ration formulations should consider the synchronization of the rumen degradable protein (RDP) to rumen undegradable protein (RUP) ratio (RDPR) with non-fiber carbohydrate (NFC) to achieve optimum microbial protein synthesis (MPS), reduce feed costs, and reduce N excretion to the environment. This study aimed to investigate the effect of RDPR and NFC synchronization on in vitro digestibility, fermentability, and MPS.

Materials and Methods: The experiment used a 3×3 factorial randomized block design with four replications. The first factor was RDPR (RDPR1=50:50; RDPR2=55:45; RDPR3=60:40) and the second factor was NFC levels (NFC1=30%, NFC2=35%, NFC3=40%). The experimental diets were evaluated using a two-stage in vitro method. The examined parameters included rumen pH, NH3 concentration, total volatile fatty acid (VFA) concentration, the molar proportion of VFAs, rumen microbes (protozoa and total bacteria population), and MPS. Data were analyzed using ANOVA, followed by the Duncan test.

Results: The results show that neither RDPR nor NFC affected rumen pH, NH3, total VFA, and the rumen microbe population. The interaction between RDPR and NFC affected the molar proportion of acetate, iso-butyrate, and n-valerate. The combination of RDPR1 and NFC1 produced a lower molar proportion of acetate (49.73%) than the other treatment combinations (>54%). The acetate to propionate ratio was influenced by the NFC levels, in which NFC2 and NFC3 produced the highest ratio (p<0.05). MPS was affected by RDPR and NFC, but not by their interaction. Treatments NFC2 and RDPR3 produced the highest MPS. NFC affected the dry matter and organic matter digestibility (DMD and OMD), with treatment NFC3 resulting in the highest DMD and OMD.

Conclusion: The combination of a 60:40 RDPR with 35% NFC resulted in the best synchronization of protein and energy available for MPS and digestion activity in the rumen.

Keywords: dairy ration digestibility, microbial protein synthesis, rumen degradable protein, rumen undegradable protein, synchronization.



No comments:

Post a Comment

Note: only a member of this blog may post a comment.