ABSTRACT
Background and Aim: The World Health Organization and the Food and Agriculture Organization list Taenia saginata, a foodborne cestode, as the most widely distributed human tapeworm worldwide. The larval stage of T. saginata, Cysticercus bovis, causes cysticercosis in bovines and infects humans who eat raw or undercooked beef. The existing detection methods of C. bovis in cattle depend on the visual inspection of meat. This study aimed to confirm the identification of C. bovis through visual inspection at the slaughterhouses in North Egypt with a molecular diagnosis.
Materials and Methods: A total of 687 locally bred cattle (Baladi), including 428 cows and 259 buffaloes, slaughtered in four slaughterhouses in North Egypt from April 2018 to February 2019 were inspected for C. bovis using the traditional meat inspection method. Positive samples were verified through polymerase chain reaction (PCR) amplification and HDP2 gene sequencing.
Results: Through visual inspection, C. bovis was detected in 4.2% and 12.4% of the slaughtered cows and buffaloes, respectively. Molecular analysis confirmed that 1.9% of the animals, all of which were cows, had C. bovis infection. DNA sequencing verified the identity of the PCR-amplified product.
Conclusion: The rate of C. bovis infection in slaughterhouses detected through meat inspection is overestimated compared with that through PCR. Although meat inspection can be used as a primary screening tool for C. bovis, a more specific molecular method is required to achieve an accurate diagnosis.
Keywords: cattle, Cysticercus bovis polymerase chain reaction analysis, Taenia saginata, zoonotic.