Sunday, 30 October 2022

Antibiotic resistance profiles and activity of clove essential oil (Syzygium aromaticum) against Pseudomonas aeruginosa isolated of canine otitis

Research (Published online: 30-10-2022)
16. Antibiotic resistance profiles and activity of clove essential oil (Syzygium aromaticum) against Pseudomonas aeruginosa isolated of canine otitis
Larissa Vieira Costa, Janaina Marcela Assunção Rosa Moreira, Isabela de Godoy Menezes, Valéria Dutra, and Arleana do Bom Parto Ferreira de Almeida
Veterinary World, 15(10): 2499-2505

ABSTRACT

Background and Aim: Pseudomonas aeruginosa is often isolated from acute and chronic otitis and deep pyoderma in dogs. The increase in bacterial resistance to antibiotics induced the need for alternative therapies to treat infections, with an emphasis on essential oils (EOs). This study aimed to investigate clove oil's in vitro bactericidal action as a therapeutic alternative against strains of P. aeruginosa isolated from canine otitis.

Materials and Methods: The antibacterial activity of clove oil was evaluated by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using the broth microdilution technique in 96-well plates. Serial concentrations of 10–0.31% of the oil were used, equivalent to 104.5–3.26 mg/mL. The susceptibility of isolates to different classes of antibiotics was determined by the disk diffusion technique using 20 antibiotics belonging to eight classes. Isolates resistant to at least one antibiotic of three different classes were considered multidrug-resistant (MDR).

Results: A high occurrence of resistance was observed for three antibiotics belonging to the cephalosporin classes (cefadroxil, cephalexin, and ceftriaxone), namely, sulfamethoxazole + trimethoprime, doxycycline, and enrofloxacin. The lowest resistance rates were observed for meropenem (4.88%), amikacin (12.20%), and tobramycin (12.2%). All isolates were susceptible to clove oil with an equivalent MIC and MBC from 3.26 to 6.53 mg/mL. Eugenol was the major component of the oil.

Conclusion: Clove EO was effective against MDR strains of P. aeruginosa, indicating an alternative for developing an efficient and low-cost antimicrobial agent to treat canine otitis.

Keywords: essential oil, multidrug resistance, Pseudomonas aeruginosa, susceptibility.



Saturday, 29 October 2022

Polymerase chain reaction-based detection of coinfecting DNA viruses in Vietnamese pigs in 2017 and 2021

Research (Published online: 29-10-2022)
15. Polymerase chain reaction-based detection of coinfecting DNA viruses in Vietnamese pigs in 2017 and 2021
Van Giap Nguyen, Huu Anh Dang, Thanh Trung Nguyen, Thi My Le Huynh, Ba Hien Nguyen, Le Anh Minh Pham, and Huynh Thanh Phuong Le
Veterinary World, 15(10): 2491-2498

ABSTRACT

Background and Aim: Many studies have reported on the phenomenon of co-infections involving two or more pathogens (bacteria or viruses) over the past few years. However, very few studies on this issue were conducted in Vietnam. Therefore, this study aimed to determine the circulation of single and multiple porcine parvovirus (PPV) (e.g., PPV1, PPV2, PPV3, and PPV4), porcine bocavirus (PBoV), and torque teno virus (TTV) (TTV1 and TTV2) infections in Vietnamese pigs.

Materials and Methods: A total of 174 porcine circovirus 2-positive samples from pigs (n = 86 for 2017 and n = 88 for 2021), including from the sera and internal organs, across 11 provinces were examined by polymerase chain reaction.

Results: This study demonstrated the wide distribution of DNA viruses among pig farms in Vietnam in 2021, with the detection rate for PPV ranging from 3.4% to 27.3% among PPV1-PPV4. Moreover, the detection rates of TTV genotypes were confirmed to be 14.8% (TTV1) and 63.6% (TTV2), respectively, and the positive rate of PBoV was 65.9%. The most frequent combinations were double and triple infections. Double infection was found in 16/86 (18.6%) in 2017 and 26/88 (29.5%) in 2021, while triple infection was found at 19/86 (22.1%) in 2017 and 26/88 (29.5%) in 2021. The incidence of simultaneous detection of more than three viruses was low.

Conclusion: These results provide at least partial information about the occurrence of three viruses, including PPV (including PPV1 to 4), PBoV, and TTV (TTV1 and TTV2), in pigs. Determination of particular viruses in pigs will help to prevent the porcine respiratory disease complex caused by DNA viruses in Vietnamese pigs in the future.

Keywords: co-infection, porcine bocavirus, porcine parvovirus, torque teno virus, Vietnamese pigs.



Tumor necrosis factor-alpha antibody labeled-polyethylene glycol-coated nanoparticles: A mesenchymal stem cells-based drug delivery system in the rat model of cisplatin-induced nephrotoxicity

Research (Published online: 29-10-2022)
14. Tumor necrosis factor-alpha antibody labeled-polyethylene glycol-coated nanoparticles: A mesenchymal stem cells-based drug delivery system in the rat model of cisplatin-induced nephrotoxicity
Faten A. M. Abo-Aziza, Saleh M. Albarrak, Abdel-Kader A. Zaki, and Shaymaa E. El-Shafey
Veterinary World, 15(10): 2475-2490

ABSTRACT

Background and Aim: A delivery system consisting of bone marrow mesenchymal stem cells (MSCs) loaded with polyethylene glycol (PEG) coated superparamagnetic iron oxide nanoparticles (SPIONs) was constructed to treat a rat model of cisplatin (Cis)-induced nephrotoxicity with 1/10 of the common dose of anti-tumor necrosis factor-alpha (TNF-α) antibodies (infliximab).

Materials and Methods: Morphology, size, crystallinity, molecular structure, and magnetic properties of uncoated and PEG-coated SPIONs were analyzed. A delivery system consisting of MSCs containing infliximab-labeled PEG-coated SPIONs (Infliximab-PEG-SPIONs-MSCs) was generated and optimized before treatment. Fifty female Wistar rats were divided into five equal groups: Group 1: Untreated control; Group 2 (Cis): Rats were administered Cis through intraperitoneal (i.p.) injection (8 mg/kg) once a week for 4 weeks; Group 3 (Infliximab): Rats were injected once with infliximab (5 mg/kg), i.p. 3 days before Cis administration; Group 4 (Cis + MSCs): Rats were injected with Cis followed by an injection of 2 × 106 MSCs into the tail vein twice at a 1-week interval; and Group 5 (Cis + Infliximab (500 μg/kg)-PEG-SPIONs-MSCs): Rats were injected with the delivery system into the tail vein twice at a 1-week interval. Besides histological examination of the kidney, the Doppler ultrasound scanner was used to scan the kidney with the Gray-color-spectral mode.

Results: In vivo, intra-renal iron uptake indicates the traffic of the delivery system from venous blood to renal tissues. Cis-induced nephrotoxicity resulted in a significant increase in TNF-α and malondialdehyde (MDA) (p < 0.05), bilirubin, creatinine, and uric acid (p < 0.01) levels compared with the untreated control group. The different treatments used in this study resulted in the amelioration of some renal parameters. However, TNF-α levels significantly decreased in Cis + Infliximab and Cis + MSCs (p < 0.05) groups. The serum levels of MDA significantly decreased in Cis + Infliximab (p < 0.05), Cis + MSCs (p < 0.05), and Cis + Infliximab-PEG-SPIONs-MSCs (p < 0.01). Furthermore, the serum activities of antioxidant enzymes were significantly elevated in the Cis + MSCs and Cis + Infliximab-PEG-SPIONs-MSCs groups (p < 0.05) compared to the Cis-induced nephrotoxicity rat model.

Conclusion: With the support of the constructed MSCs-SPIONs infliximab delivery system, it will be possible to track and monitor cell homing after therapeutic application. This infliximab-loading system may help overcome some challenges regarding drug delivery to the target organ, optimize therapeutics' efficacy, and reduce the dose. The outcomes of the current study provide a better understanding of the potential of combining MSCs and antibodies-linked nanoparticles for the treatment of nephrotoxicity. However, further investigation is recommended using different types of other drugs. For new approaches development, we should evaluate whether existing toxicity analysis and risk evaluation strategies are reliable and enough for the variety and complexity of nanoparticles.

Keywords: cisplatin, drug delivery system, infliximab, mesenchymal stem cells, nephrotoxicity, superparamagnetic iron oxide nanoparticles, tumor necrosis factor-alpha.



Friday, 28 October 2022

Sangyod rice bran extract enhances Lacticaseibacillus paracasei growth during the exponential phase and antibacterial activity of L. paracasei supernatant against zoonotic and foodborne pathogens

Research (Published online: 28-10-2022)
13. Sangyod rice bran extract enhances Lacticaseibacillus paracasei growth during the exponential phase and antibacterial activity of L. paracasei supernatant against zoonotic and foodborne pathogens
Krittika Kabploy, Phirabhat Saengsawang, Chonticha Romyasamit, Suthinee Sangkanu, Warangkana Kitpipit, Thotsapol Thomrongsuwannakij, Tuempong Wongtawan, Mareena Daus, Maria de Lourdes Pereira, and Watcharapong Mitsuwan
Veterinary World, 15(10): 2466-2474

ABSTRACT

Background and Aim: Prebiotics are a group of nutrients or compounds that are degraded by the gut microbiota, including Lacticaseibacillus paracasei. The probiotic plays an important role in adhesion to the gut and is able to produce antimicrobial substances to inhibit pathogens. This study aimed to investigate the effects of Sangyod rice bran extract on the growth promotion of L. paracasei. Furthermore, antibacterial activity of the extract and L. paracasei supernatants cultured in De Man, Rogosa and Sharpe (MRS) medium plus the extract against zoonotic and foodborne pathogens was investigated.

Materials and Methods: Antibacterial activity of the crude extract and the oil from Sangyod rice bran against the pathogens, including Bacillus cereusStaphylococcus aureusEscherichia coli, Avian pathogenic E. coli, and Pseudomonas aeruginosa was investigated using broth microdilution assay. The effects of the crude extract and the oil on the growth and adhesion of L. paracasei were further determined. The antibacterial activity of L. paracasei supernatant cultured in the medium supplemented with the extract and the oil against the pathogens was determined by agar well diffusion assay, followed by the broth microdilution assay. Finally, the chemical constituents and antioxidant activity of the crude extract and the oil from Sangyod rice bran were investigated.

Results: The crude extract and the oil from Sangyod rice bran enhanced L. paracasei growth during the exponential phase. Furthermore, the crude extract at 0.25 mg/mL significantly enhanced the adhesion of L. paracasei to the surface compared with the control. Both minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of the crude extract against B. cereus and S. aureus were 0.5 and 1.0 mg/mL, respectively. All pathogens were sensitive to the supernatant of L. paracasei with similar MIC and MBC ranging from 12.5% v/v to 50% v/v. However, the MIC and MBC values of L. paracasei supernatant grown in MRS medium plus the crude extract and oil were not significantly different compared to the supernatant obtained from MRS alone. The crude extract had free radical scavenging activities with IC50 values at 0.61 mg/mL.

Conclusion: The results suggested the potential benefits of the crude extract from Sangyod rice bran for inducing the growth and the adhesion of L. paracasei and inhibiting zoonotic and foodborne pathogens.

Keywords: Avian pathogenic Escherichia coliBacillus cereusLacticaseibacillus paracasei, Sangyod rice bran extract, Staphylococcus aureus.



Thursday, 27 October 2022

Occurrence, antimicrobial resistance, and potential zoonosis risk of avian pathogenic Escherichia coli in Indonesia: A review

Review (Published online: 27-10-2022)
2. Occurrence, antimicrobial resistance, and potential zoonosis risk of avian pathogenic Escherichia coli in Indonesia: A review
Freshinta Jellia Wibisono, Mustofa Helmi Effendi, and Freshindy Marissa Wibisono
International Journal of One Health, 8(2): 76-85

ABSTRACT

Avian pathogenic Escherichia coli (APEC) causes avian colibacillosis or colibacillosis and is a major endemic disease of poultry worldwide, including in Indonesia. It is characterized by a black proventriculus and can damage other organs, leading to pericarditis, perihepatitis, water sacculitis, mesenteritis, and omphalitis. The APEC strain is one of the six main sub-pathotypes of the extraintestinal pathogenic E. coli (ExPEC) pathotype. The relationship between APEC and infection in humans is questionable. The previous studies have suggested poultry products, including meat and eggs, as a potential source of infection for the transmission of ExPEC disease to humans. Due to the absence of reporting of disease incidents and the lack of literature updates on this disease, it seems as if APEC does not exist in Indonesia. Since bacterial resistance is a growing problem in Indonesia, and globally, the World Health Organization issued a statement regarding the importance of assessing related factors and their control strategies. Antimicrobial resistance, especially multidrug resistance, presents a challenge when treating infectious diseases. In Indonesia, the incidence of resistance to several antimicrobials in cases of avian colibacillosis is high. In addition, avian and human extraintestinal E. coli infections present a potential zoonotic risk. Furthermore, a relationship exists between antibiotic resistance to foodborne bacteria and the occurrence of antibiotic resistance in humans, so the use of antibiotics in the poultry industry must be controlled. Therefore, the One Health strategy should be implemented to prevent the overuse or misuse of antibiotics in the poultry industry. This review aimed to increase awareness of people who are at risk of getting Avian pathogenic Escherichia coli (APEC) from poultry by controlling the spread of APEC by maintaining a clean environment and hygienic personnel in poultry farms.

Keywords: antimicrobial resistance, avian pathogenic Escherichia coli, extraintestinal pathogenic Escherichia coli, human health, zoonosis.



Saturday, 22 October 2022

A review of avian mycobacteriosis: An emerging bacterial disease of public health concern

Review (Published online: 22-10-2022)
1. A review of avian mycobacteriosis: An emerging bacterial disease of public health concern
Wafaa A. Abd El-Ghany
International Journal of One Health, 8(2): 70-75

ABSTRACT

Avian mycobacteriosis is a chronic debilitating disease of birds which poses a public health threat. In avian species, the disease is primarily caused by Mycobacterium avium subspecies avium. Nearly all bird species are susceptible to this infection, with older birds being more susceptible than younger ones. Ingestion of feed and water contaminated by the excreta of infected or chronic carrier birds is the main route of Mycobacterium infection and transmission; however, the respiratory route is also possible. Migratory wild or free-living birds play an important role in mycobacteriosis transmission, and affected birds show severe depletion, emaciation, anemia, diarrhea, and respiratory manifestations. The appearance of characteristic tuberculous nodules in the digestive system, especially in the intestine, liver, and spleen, is pathognomonic. Confirmation of Mycobacterium infection can be achieved through isolation on specifically selected media, direct smear for detection of characteristic acid-fast bacilli, and detection of the bacterium using molecular diagnostic methods. Serological and allergic tests can also be applied. Different species of Mycobacterium, especially M. avium, have public health significance and can be transmitted from birds to humans. Such zoonosis is especially dangerous in human immunocompromised patients. Authorities and governments have implemented strict and comprehensive eradication programs for avian mycobacteriosis. These biosecurity measures, including surveillance monitoring programs and antimicrobial susceptibility testing, are essential for the prevention and treatment of Mycobacterium infection in poultry production systems. This review was designed to focus on avian mycobacteriosis in birds and humans.

Keywords: birds, human, mycobacteria, zoonosis.



Interaction of Cyprinus carpio Linnaeus with the biofilm-forming Aeromonas hydrophila

Research (Published online: 22-10-2022)
12. Interaction of Cyprinus carpio Linnaeus with the biofilm-forming Aeromonas hydrophila
Ekaterina Lenchenko, Svyatoslav Lenchenko, Nadezhda Sachivkina, Olga Kuznetsova, and Alfia Ibragimova
Veterinary World, 15(10): 2458-2465

ABSTRACT

Background and Aim: The resistance of susceptible fish populations and the adaptive potential of heterogeneous biofilms, which cause multiple antibacterial resistance and long-term persistence of microorganisms, mediate the development and outcome of the infectious process. The study of the fish immunological parameters in interaction with biofilm-forming bacteria is of practical importance for assessing the stability of the homeostasis of the fish. This study aimed to determine the immunobiological parameters of Cyprinus carpio Linnaeus when interacting with biofilm-forming bacteria Aeromonas hydrophila.

Materials and Methods: Clinically healthy fish C. carpio L. (Linnaeus, 1758) of both sexes, aged 4 years, and weighing 1.0–1.5 kg (n = 10), were used in this study. The fish were taken from the pond of the VNIIR experimental base in the period of 2020–2022. The standard method was employed to determine the phagocytic activity of blood cells, the total redox activity of neutrophils, and the bactericidal activity of blood serum.

Results: After 24–48 h of cultivation in nutrient broth, the implementation of the processes of intercellular communication of bacteria had common patterns of formation of the heterogeneous structure of biofilms. Moreover, analyzing the optical density indices (density, D), it was observed that A. hydrophila was a strong producer of biofilms, as the optical density of the sample (density of sample, Ds) exceeded the optical density of the control (density of control, Dc) by more than 4 times (D = 0.464 ± 0.07). The ratio of the average number of microorganisms attached to the surface of one erythrocyte (average adhesion index) and the percentage (%) of erythrocytes having bacteria on their surface (adhesion coefficient [AC]) was 14.05 ± 0.72, and the adhesion index, AI was ≥4.00, indicating A. hydrophila to be highly adhesive. In addition, the AC of erythrocytes having bacteria on the surface was 14.05% ± 0.72%. A direct correlation was established (R2 = 0.94) between the AC (14.05% ± 0.11%–13.29% ± 0.08%) and the phagocytic index (11.3% ± 0.29%–32.0% ± 0.8%). The indicators of spontaneous nitro blue tetrazolium were 103.20 ± 11.70 when estimating the total redox activity of neutrophils. The optical density increased to 182.10 ± 21.12 with the addition of 20.0 μL of A. hydrophila bacteria (1 billion/mL) and the activity of neutrophils also increased.

Conclusion: Among the markers of homeostasis stability, immunological indicators most fully reflect the mechanisms of initiation, development, and outcome of the infectious process mediated by the interaction of adhesive molecules of multicellular eukaryotes and adhesives of infectious disease pathogens. The research will contribute to further understanding the potential mechanism of quorum-sensing molecules and the search for new anti-adhesive drugs that reduce the formation of biofilms.

Keywords: adhesion, Aeromonas hydrophila, biofilm, Cyprinus carpio Linnaeus, optical density.