Saturday, 29 October 2022

Tumor necrosis factor-alpha antibody labeled-polyethylene glycol-coated nanoparticles: A mesenchymal stem cells-based drug delivery system in the rat model of cisplatin-induced nephrotoxicity

Research (Published online: 29-10-2022)
14. Tumor necrosis factor-alpha antibody labeled-polyethylene glycol-coated nanoparticles: A mesenchymal stem cells-based drug delivery system in the rat model of cisplatin-induced nephrotoxicity
Faten A. M. Abo-Aziza, Saleh M. Albarrak, Abdel-Kader A. Zaki, and Shaymaa E. El-Shafey
Veterinary World, 15(10): 2475-2490

ABSTRACT

Background and Aim: A delivery system consisting of bone marrow mesenchymal stem cells (MSCs) loaded with polyethylene glycol (PEG) coated superparamagnetic iron oxide nanoparticles (SPIONs) was constructed to treat a rat model of cisplatin (Cis)-induced nephrotoxicity with 1/10 of the common dose of anti-tumor necrosis factor-alpha (TNF-α) antibodies (infliximab).

Materials and Methods: Morphology, size, crystallinity, molecular structure, and magnetic properties of uncoated and PEG-coated SPIONs were analyzed. A delivery system consisting of MSCs containing infliximab-labeled PEG-coated SPIONs (Infliximab-PEG-SPIONs-MSCs) was generated and optimized before treatment. Fifty female Wistar rats were divided into five equal groups: Group 1: Untreated control; Group 2 (Cis): Rats were administered Cis through intraperitoneal (i.p.) injection (8 mg/kg) once a week for 4 weeks; Group 3 (Infliximab): Rats were injected once with infliximab (5 mg/kg), i.p. 3 days before Cis administration; Group 4 (Cis + MSCs): Rats were injected with Cis followed by an injection of 2 × 106 MSCs into the tail vein twice at a 1-week interval; and Group 5 (Cis + Infliximab (500 μg/kg)-PEG-SPIONs-MSCs): Rats were injected with the delivery system into the tail vein twice at a 1-week interval. Besides histological examination of the kidney, the Doppler ultrasound scanner was used to scan the kidney with the Gray-color-spectral mode.

Results: In vivo, intra-renal iron uptake indicates the traffic of the delivery system from venous blood to renal tissues. Cis-induced nephrotoxicity resulted in a significant increase in TNF-α and malondialdehyde (MDA) (p < 0.05), bilirubin, creatinine, and uric acid (p < 0.01) levels compared with the untreated control group. The different treatments used in this study resulted in the amelioration of some renal parameters. However, TNF-α levels significantly decreased in Cis + Infliximab and Cis + MSCs (p < 0.05) groups. The serum levels of MDA significantly decreased in Cis + Infliximab (p < 0.05), Cis + MSCs (p < 0.05), and Cis + Infliximab-PEG-SPIONs-MSCs (p < 0.01). Furthermore, the serum activities of antioxidant enzymes were significantly elevated in the Cis + MSCs and Cis + Infliximab-PEG-SPIONs-MSCs groups (p < 0.05) compared to the Cis-induced nephrotoxicity rat model.

Conclusion: With the support of the constructed MSCs-SPIONs infliximab delivery system, it will be possible to track and monitor cell homing after therapeutic application. This infliximab-loading system may help overcome some challenges regarding drug delivery to the target organ, optimize therapeutics' efficacy, and reduce the dose. The outcomes of the current study provide a better understanding of the potential of combining MSCs and antibodies-linked nanoparticles for the treatment of nephrotoxicity. However, further investigation is recommended using different types of other drugs. For new approaches development, we should evaluate whether existing toxicity analysis and risk evaluation strategies are reliable and enough for the variety and complexity of nanoparticles.

Keywords: cisplatin, drug delivery system, infliximab, mesenchymal stem cells, nephrotoxicity, superparamagnetic iron oxide nanoparticles, tumor necrosis factor-alpha.



Friday, 28 October 2022

Sangyod rice bran extract enhances Lacticaseibacillus paracasei growth during the exponential phase and antibacterial activity of L. paracasei supernatant against zoonotic and foodborne pathogens

Research (Published online: 28-10-2022)
13. Sangyod rice bran extract enhances Lacticaseibacillus paracasei growth during the exponential phase and antibacterial activity of L. paracasei supernatant against zoonotic and foodborne pathogens
Krittika Kabploy, Phirabhat Saengsawang, Chonticha Romyasamit, Suthinee Sangkanu, Warangkana Kitpipit, Thotsapol Thomrongsuwannakij, Tuempong Wongtawan, Mareena Daus, Maria de Lourdes Pereira, and Watcharapong Mitsuwan
Veterinary World, 15(10): 2466-2474

ABSTRACT

Background and Aim: Prebiotics are a group of nutrients or compounds that are degraded by the gut microbiota, including Lacticaseibacillus paracasei. The probiotic plays an important role in adhesion to the gut and is able to produce antimicrobial substances to inhibit pathogens. This study aimed to investigate the effects of Sangyod rice bran extract on the growth promotion of L. paracasei. Furthermore, antibacterial activity of the extract and L. paracasei supernatants cultured in De Man, Rogosa and Sharpe (MRS) medium plus the extract against zoonotic and foodborne pathogens was investigated.

Materials and Methods: Antibacterial activity of the crude extract and the oil from Sangyod rice bran against the pathogens, including Bacillus cereusStaphylococcus aureusEscherichia coli, Avian pathogenic E. coli, and Pseudomonas aeruginosa was investigated using broth microdilution assay. The effects of the crude extract and the oil on the growth and adhesion of L. paracasei were further determined. The antibacterial activity of L. paracasei supernatant cultured in the medium supplemented with the extract and the oil against the pathogens was determined by agar well diffusion assay, followed by the broth microdilution assay. Finally, the chemical constituents and antioxidant activity of the crude extract and the oil from Sangyod rice bran were investigated.

Results: The crude extract and the oil from Sangyod rice bran enhanced L. paracasei growth during the exponential phase. Furthermore, the crude extract at 0.25 mg/mL significantly enhanced the adhesion of L. paracasei to the surface compared with the control. Both minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of the crude extract against B. cereus and S. aureus were 0.5 and 1.0 mg/mL, respectively. All pathogens were sensitive to the supernatant of L. paracasei with similar MIC and MBC ranging from 12.5% v/v to 50% v/v. However, the MIC and MBC values of L. paracasei supernatant grown in MRS medium plus the crude extract and oil were not significantly different compared to the supernatant obtained from MRS alone. The crude extract had free radical scavenging activities with IC50 values at 0.61 mg/mL.

Conclusion: The results suggested the potential benefits of the crude extract from Sangyod rice bran for inducing the growth and the adhesion of L. paracasei and inhibiting zoonotic and foodborne pathogens.

Keywords: Avian pathogenic Escherichia coliBacillus cereusLacticaseibacillus paracasei, Sangyod rice bran extract, Staphylococcus aureus.



Thursday, 27 October 2022

Occurrence, antimicrobial resistance, and potential zoonosis risk of avian pathogenic Escherichia coli in Indonesia: A review

Review (Published online: 27-10-2022)
2. Occurrence, antimicrobial resistance, and potential zoonosis risk of avian pathogenic Escherichia coli in Indonesia: A review
Freshinta Jellia Wibisono, Mustofa Helmi Effendi, and Freshindy Marissa Wibisono
International Journal of One Health, 8(2): 76-85

ABSTRACT

Avian pathogenic Escherichia coli (APEC) causes avian colibacillosis or colibacillosis and is a major endemic disease of poultry worldwide, including in Indonesia. It is characterized by a black proventriculus and can damage other organs, leading to pericarditis, perihepatitis, water sacculitis, mesenteritis, and omphalitis. The APEC strain is one of the six main sub-pathotypes of the extraintestinal pathogenic E. coli (ExPEC) pathotype. The relationship between APEC and infection in humans is questionable. The previous studies have suggested poultry products, including meat and eggs, as a potential source of infection for the transmission of ExPEC disease to humans. Due to the absence of reporting of disease incidents and the lack of literature updates on this disease, it seems as if APEC does not exist in Indonesia. Since bacterial resistance is a growing problem in Indonesia, and globally, the World Health Organization issued a statement regarding the importance of assessing related factors and their control strategies. Antimicrobial resistance, especially multidrug resistance, presents a challenge when treating infectious diseases. In Indonesia, the incidence of resistance to several antimicrobials in cases of avian colibacillosis is high. In addition, avian and human extraintestinal E. coli infections present a potential zoonotic risk. Furthermore, a relationship exists between antibiotic resistance to foodborne bacteria and the occurrence of antibiotic resistance in humans, so the use of antibiotics in the poultry industry must be controlled. Therefore, the One Health strategy should be implemented to prevent the overuse or misuse of antibiotics in the poultry industry. This review aimed to increase awareness of people who are at risk of getting Avian pathogenic Escherichia coli (APEC) from poultry by controlling the spread of APEC by maintaining a clean environment and hygienic personnel in poultry farms.

Keywords: antimicrobial resistance, avian pathogenic Escherichia coli, extraintestinal pathogenic Escherichia coli, human health, zoonosis.



Saturday, 22 October 2022

A review of avian mycobacteriosis: An emerging bacterial disease of public health concern

Review (Published online: 22-10-2022)
1. A review of avian mycobacteriosis: An emerging bacterial disease of public health concern
Wafaa A. Abd El-Ghany
International Journal of One Health, 8(2): 70-75

ABSTRACT

Avian mycobacteriosis is a chronic debilitating disease of birds which poses a public health threat. In avian species, the disease is primarily caused by Mycobacterium avium subspecies avium. Nearly all bird species are susceptible to this infection, with older birds being more susceptible than younger ones. Ingestion of feed and water contaminated by the excreta of infected or chronic carrier birds is the main route of Mycobacterium infection and transmission; however, the respiratory route is also possible. Migratory wild or free-living birds play an important role in mycobacteriosis transmission, and affected birds show severe depletion, emaciation, anemia, diarrhea, and respiratory manifestations. The appearance of characteristic tuberculous nodules in the digestive system, especially in the intestine, liver, and spleen, is pathognomonic. Confirmation of Mycobacterium infection can be achieved through isolation on specifically selected media, direct smear for detection of characteristic acid-fast bacilli, and detection of the bacterium using molecular diagnostic methods. Serological and allergic tests can also be applied. Different species of Mycobacterium, especially M. avium, have public health significance and can be transmitted from birds to humans. Such zoonosis is especially dangerous in human immunocompromised patients. Authorities and governments have implemented strict and comprehensive eradication programs for avian mycobacteriosis. These biosecurity measures, including surveillance monitoring programs and antimicrobial susceptibility testing, are essential for the prevention and treatment of Mycobacterium infection in poultry production systems. This review was designed to focus on avian mycobacteriosis in birds and humans.

Keywords: birds, human, mycobacteria, zoonosis.



Interaction of Cyprinus carpio Linnaeus with the biofilm-forming Aeromonas hydrophila

Research (Published online: 22-10-2022)
12. Interaction of Cyprinus carpio Linnaeus with the biofilm-forming Aeromonas hydrophila
Ekaterina Lenchenko, Svyatoslav Lenchenko, Nadezhda Sachivkina, Olga Kuznetsova, and Alfia Ibragimova
Veterinary World, 15(10): 2458-2465

ABSTRACT

Background and Aim: The resistance of susceptible fish populations and the adaptive potential of heterogeneous biofilms, which cause multiple antibacterial resistance and long-term persistence of microorganisms, mediate the development and outcome of the infectious process. The study of the fish immunological parameters in interaction with biofilm-forming bacteria is of practical importance for assessing the stability of the homeostasis of the fish. This study aimed to determine the immunobiological parameters of Cyprinus carpio Linnaeus when interacting with biofilm-forming bacteria Aeromonas hydrophila.

Materials and Methods: Clinically healthy fish C. carpio L. (Linnaeus, 1758) of both sexes, aged 4 years, and weighing 1.0–1.5 kg (n = 10), were used in this study. The fish were taken from the pond of the VNIIR experimental base in the period of 2020–2022. The standard method was employed to determine the phagocytic activity of blood cells, the total redox activity of neutrophils, and the bactericidal activity of blood serum.

Results: After 24–48 h of cultivation in nutrient broth, the implementation of the processes of intercellular communication of bacteria had common patterns of formation of the heterogeneous structure of biofilms. Moreover, analyzing the optical density indices (density, D), it was observed that A. hydrophila was a strong producer of biofilms, as the optical density of the sample (density of sample, Ds) exceeded the optical density of the control (density of control, Dc) by more than 4 times (D = 0.464 ± 0.07). The ratio of the average number of microorganisms attached to the surface of one erythrocyte (average adhesion index) and the percentage (%) of erythrocytes having bacteria on their surface (adhesion coefficient [AC]) was 14.05 ± 0.72, and the adhesion index, AI was ≥4.00, indicating A. hydrophila to be highly adhesive. In addition, the AC of erythrocytes having bacteria on the surface was 14.05% ± 0.72%. A direct correlation was established (R2 = 0.94) between the AC (14.05% ± 0.11%–13.29% ± 0.08%) and the phagocytic index (11.3% ± 0.29%–32.0% ± 0.8%). The indicators of spontaneous nitro blue tetrazolium were 103.20 ± 11.70 when estimating the total redox activity of neutrophils. The optical density increased to 182.10 ± 21.12 with the addition of 20.0 μL of A. hydrophila bacteria (1 billion/mL) and the activity of neutrophils also increased.

Conclusion: Among the markers of homeostasis stability, immunological indicators most fully reflect the mechanisms of initiation, development, and outcome of the infectious process mediated by the interaction of adhesive molecules of multicellular eukaryotes and adhesives of infectious disease pathogens. The research will contribute to further understanding the potential mechanism of quorum-sensing molecules and the search for new anti-adhesive drugs that reduce the formation of biofilms.

Keywords: adhesion, Aeromonas hydrophila, biofilm, Cyprinus carpio Linnaeus, optical density.



The effect of feeding black soldier fly larvae on growth performance, protein, and fat content of red hybrid tilapia (Oreochromis spp.)

Research (Published online: 22-10-2022)
11. The effect of feeding black soldier fly larvae on growth performance, protein, and fat content of red hybrid tilapia (Oreochromis spp.)
H. N. Aisyah, Z. A. R. Athirah, W. R. Hanani, S. S. Arshad, H. A. Hassim, M. F. Nazarudin, and M. Y. Ina-Salwany
Veterinary World, 15(10): 2453-2457

ABSTRACT

Background and Aim: In the aquaculture industry, the crucial goal is to minimize production costs, especially feeding costs, without significant side effects. Black soldier fly larva (BSFL) is a locally available, eco-friendly, and sustainable source that is high in crude protein (42% dry matter [DM]) and fat (35% DM). This study aimed to determine the growth performance along with the composition of crude fat and protein in red hybrid fingerlings after the addition of BSFL into the diet.

Materials and Methods: A total of 120 fingerlings of uniform size (mean initial weight of 1.46 ± 0.06 g) were randomly assigned to one of four groups (n = 10) (A, B, C, and D) per tank (1 m × 2 m × 1 m). For 21 days, Group A (control group) was fed with 100% commercial diet; Group B was fed with 90% commercial fish diet + 10% BSFL; Group C was fed with 80% commercial fish diet + 20% BSFL; and Group D was fed with 70% commercial fish diet + 30% BSFL. Feed efficiency, growth performance, and proximate composition analysis were performed on the fish.

Results: The results displayed that the group with the highest BSFL percentage had a greater effect on protein and fat composition than the control group. The proximate composition analysis of fish-fed diet revealed that an increase in the level of BSFL inclusion increases the protein content in the fish. In comparison to the other groups, the experimental diet with 30% BSFL inclusion has the highest levels of crude protein (80.30% DM) and fat (2.90% DM).

Conclusion: It is concluded that incorporating BSFL into a commercial diet for red hybrid tilapia fingerlings increased crude protein and fat composition, providing an alternative protein and fat source in fish diets.

Keywords: black soldier fly larvae, growth performance, Oreochromis spp., red hybrid tilapia.



Friday, 21 October 2022

Prevalence and resistance to gastrointestinal parasites in goats: A review

Review (Published online: 21-10-2022)
10. Prevalence and resistance to gastrointestinal parasites in goats: A review
Takalani Judas Mpofu, Khathutshelo Agree Nephawe, and Bohani Mtileni
Veterinary World, 15(10): 2442-2452

ABSTRACT

Gastrointestinal parasitism, particularly nematode infection, is a major health issue affecting goats worldwide, resulting in clinical diseases and productivity loss. Prevalent gastrointestinal parasites (GIPs) affecting goats in South Africa are the Strongyloides papillosusEimeria spp., and Strongyles, especially the Haemonchus contortus and Trichostrongylus spp. According to the issues discussed in this paper and by other authors, the prevalence and intensity of various GIPs vary with an animal's location, breed, age, sex, and season. Because GIPs easily develop resistance to chemical treatment, selecting and breeding genetically GIP-resistant animals would be a relatively simple and inexpensive strategy for reducing or eliminating the current reliance on chemotherapy. Potential phenotypic indicators for selecting GIP-resistant goats include parasitological, immunological, and pathological phenotypic markers. Synergistic use of these indicators should be encouraged for a more accurate simplified genotype selection of resistant animals. Genes with Mendelian inheritance, particularly those involved in immunoregulatory mechanisms, have been identified in goats. Exploring this knowledge base to develop cost-effective molecular tools that facilitate enhanced genetic improvement programs is a current challenge. Future statistical and biological models should investigate genetic variations within genomic regions and different candidate genes involved in immunoregulatory mechanisms, as well as the identification of single nucleotide polymorphisms known to affect GIP infection levels.

Keywords: immunoglobulin heavy chain, interferon-gamma resistant, interleukin, major histocompatibility complex, resilience, strongyles.