ABSTRACT
Aim: The present study was performed to assess the association of single-nucleotide polymorphisms (SNPs) in the fatty acid-binding protein 4 (FABP4) gene with birth weight (BW), final weight (FW), and average daily gain (ADG) in three Egyptian sheep breeds.
Materials and Methods: Genomic DNA was extracted from the blood samples of 50 male and female individuals representing Ossimi, Rahmani, and Barki sheep breeds. A 407 bp nucleotide (nt) segment from the first intron of FABP4 was amplified by polymerase chain reaction, sequenced, and analyzed in the different samples.
Results: Sequence analysis of the determined segment (407 bp) revealed four SNPs (all transition types) at nt position 372 (CP011894.1:g.57605471) A>G, nt position 211 (CP011894.1:g.57605632) A>G, nt position 143 (CP011894.1:g.57605700) T>C, and nt position 111 (CP011894.1:g.57605732) T>C. The allelic and genotypic frequencies for the identified SNPs in the sheep breeds were calculated. At nt positions 372 and 211, two alleles were identified (A and G). Only two genotypes were present at nt position 372 (AA and AG), while three genotypes were present at nt position 211 (AA, AG, and GG). Two alleles (T and C) and three identified genotypes (TT, TC, and CC) were detected at nt positions 143 and 111. Analysis of the results revealed that AA genotype at nt position 372 is associated with higher estimates for BW, FW, and ADG when compared to all the other genotypes. Very high correlation coefficients were found between the genotypes 143-TT and 111-TT and also between 143-TC and 111-TC. The genotypes 372-AG, 211-GG, 211-AA, 143-TT, 143-CC, 111-TT, 111-TC, and 111-CC were associated with negative effects on BW, FW, and ADG.
Conclusion: The detection of four SNPs in a partial sequence of the Egyptian ovine FABP4 gene intron 1 reflected that this gene harbors substantial diversity. In addition, a novel SNP at nt position 372 (CP011894.1:g.57605471) A>G was associated with higher estimates for BW, FW, and ADG.
Keywords: body weight, FABP4 gene, growth rate, sheep, single-nucleotide polymorphisms.