Research (Published online: 21-07-2019)
23. Yersinia enterocolitica: Prevalence, virulence, and antimicrobial resistance from retail and processed meat in Egypt
Gamal Younis, Mona Mady and Amal Awad
Veterinary World, 12(7): 1078-1084
ABSTRACT
Aim: The objectives of this study were to investigate the prevalence of Yersinia enterocolitica in retail chicken meat, ground and processed beef meat, determine their virulence-associated genes, antimicrobial susceptibility pattern, molecular detection of extended-spectrum β-lactamases, and their capability of biofilm formation in vitro.
Materials and Methods: A total of 210 samples (120 retail chicken meat, 30 ground beef, 30 beef burger, and 30 sausage samples) were collected from different retail chicken outlets and markets located at Mansoura city between December 2016 and April 2017. Meat samples were examined bacteriologically for the existence of Y. enterocolitica; bacterial colonies that displayed positive biochemical properties were subjected to polymerase chain reaction targeting 16 rRNA gene. Y. enterocolitica isolates were tested for their susceptibility to six antimicrobial agents using disk diffusion method. Uniplex PCR was used for screening Y. enterocoliticaisolates for the presence of two virulence chromosome-associated genes (ail and yst), and β-lactamases (blaTEM and blaSHV). The capability of Y. enterocolitica to form biofilms was detected by tube method.
Results: Thirty Y. enterocolitica isolates (14.29%) were recovered including 19 (15.83%) isolates from chicken meat, 3 (10%) from ground beef, 5 (16.67%) from beef burger, and 3 (10%) from sausage samples. Regarding ail gene, it was detected in 6.67% (2/30), while yst gene detected in 20% (6/30) Y. enterocolitica isolates. About 80%, 70%, 63.33%, and 50% of Y. enterocolitica isolates were sensitive to ciprofloxacin, gentamicin, cefotaxime, and streptomycin, respectively, while 83.33% of Y. enterocolitica isolates were resistant to both ampicillin and cephalothin. Interestingly, 21 (70%) isolates had the capability of biofilms formation in vitro. Among the multidrug-resistant (MDR) strains, a significant difference (p<0 .05="" and="" antimicrobials="" between="" biofilm="" correlated="" formation.="" formation="" found="" genes.="" however="" isolates="" lactam-resistant="" lactam="" mdr="" of="" presence="" resistance="" span="" the="" to="" was="" with="">0>
Conclusion: The presence of Y. enterocolitica in chicken meat, ground and processed beef meat represents a significant health risk for meat consumers, which reflects the contamination of slaughterhouses and processing operations, therefore, strict hygienic measures should be applied to minimize carcasses contamination.
Keywords: antimicrobial susceptibility, biofilm formation, virulence genes, Yersinia enterocolitica.
Materials and Methods: A total of 210 samples (120 retail chicken meat, 30 ground beef, 30 beef burger, and 30 sausage samples) were collected from different retail chicken outlets and markets located at Mansoura city between December 2016 and April 2017. Meat samples were examined bacteriologically for the existence of Y. enterocolitica; bacterial colonies that displayed positive biochemical properties were subjected to polymerase chain reaction targeting 16 rRNA gene. Y. enterocolitica isolates were tested for their susceptibility to six antimicrobial agents using disk diffusion method. Uniplex PCR was used for screening Y. enterocoliticaisolates for the presence of two virulence chromosome-associated genes (ail and yst), and β-lactamases (blaTEM and blaSHV). The capability of Y. enterocolitica to form biofilms was detected by tube method.
Results: Thirty Y. enterocolitica isolates (14.29%) were recovered including 19 (15.83%) isolates from chicken meat, 3 (10%) from ground beef, 5 (16.67%) from beef burger, and 3 (10%) from sausage samples. Regarding ail gene, it was detected in 6.67% (2/30), while yst gene detected in 20% (6/30) Y. enterocolitica isolates. About 80%, 70%, 63.33%, and 50% of Y. enterocolitica isolates were sensitive to ciprofloxacin, gentamicin, cefotaxime, and streptomycin, respectively, while 83.33% of Y. enterocolitica isolates were resistant to both ampicillin and cephalothin. Interestingly, 21 (70%) isolates had the capability of biofilms formation in vitro. Among the multidrug-resistant (MDR) strains, a significant difference (p<0 .05="" and="" antimicrobials="" between="" biofilm="" correlated="" formation.="" formation="" found="" genes.="" however="" isolates="" lactam-resistant="" lactam="" mdr="" of="" presence="" resistance="" span="" the="" to="" was="" with="">0>
Conclusion: The presence of Y. enterocolitica in chicken meat, ground and processed beef meat represents a significant health risk for meat consumers, which reflects the contamination of slaughterhouses and processing operations, therefore, strict hygienic measures should be applied to minimize carcasses contamination.
Keywords: antimicrobial susceptibility, biofilm formation, virulence genes, Yersinia enterocolitica.