Research (Published online: 01-08-2018)
1. Genetic and phylogenetic analysis of the outer capsid protein genes of Indian isolates of bluetongue virus serotype-16
Arpit Saxena, Sanchay K. Biswas, Karam Chand, Jishnu Naskar, Ankita Chauhan, Gulam Mohd, Neha Tewari, Kurat-ul-Ain, Muthannan A. Ramakrishnan and Awadh Bihari Pandey
Veterinary World, 11(8): 1025-1029
ABSTRACT
Aim: The aim of the study was to characterize bluetongue virus serotype 16 (BTV-16), recently isolated from different states of India. The evolutionary relationship of newly isolated BTV-16 and previously reported Indian and global BTV-16 isolates were compared using molecular analysis.
Materials and Methods: In the present study, five (n=5) BTV-16 isolates were used to amplify gene segment-2 and segment-6 encoding the outer capsid proteins VP2 and VP5, respectively. The amplified products were purified and sequenced by the Sanger sequencing method. The phylogenetic relationship and nucleotide identity of all five BTV-16 isolates were compared with previously reported Indian and global BTV-16 isolates. Nucleotide sequence data were aligned using the CLUSTAL W algorithm implemented in the MegAlign of DNASTAR program package (MegAlign 5.00, DNASTAR Inc., Madison, USA). Phylogenetic analyses were carried out using MEGA version 6.0 software with the best nucleotide substitution model.
Results: Phylogenetic analysis based on the VP2 and VP5 encoding genes, segregates Indian BTV-16 isolates in a distinct cluster with proximity to the Eastern topotype. Indian isolates make a monophyletic cluster with Eastern topotypes with Western topotype BTV-16 (BTV-16/NIG/AJ586694) occupying a separate cluster. Indian isolates were found to share 91.5%- 97.5% and 96.5%-98.9% identity at the nucleotide and deduced amino acid (aa) level, respectively, to the global BTV-16 isolates. There is a high degree of variation with the Nigerian isolate with 27.0-27.7% and 26.0-26.9% at the nucleotide and aa sequence level, respectively. These data suggest that Indian BTV-16 isolates might have evolved separately within the Eastern BTV topotype.
Conclusion: Phylogenetic analyses and nucleotide identity of BTV-16 isolates at the VP2 and VP5 gene encoded level indicate that isolates used in the present study might have evolved from a common Eastern topotype ancestor. The data presented in this study will be helpful for future selection of reference strains in a serological and molecular epidemiology study.
Keywords: bluetongue virus, phylogenetic analysis, VP2 gene, VP5 gene.