Monday 4 November 2019

Cinnamon oil downregulates virulence genes of poultry respiratory bacterial agents and revealed significant bacterial inhibition: An in vitro perspective

Research (Published online: 04-11-2019)
4. Cinnamon oil downregulates virulence genes of poultry respiratory bacterial agents and revealed significant bacterial inhibition: An in vitro perspective
Ahmed Mohammed Erfan and Sherif Marouf
Veterinary World, 12(11): 1707-1715
ABSTRACT
Background and Aim: Respiratory bacterial agents represent one of the most harmful factors that ordinarily threaten the poultry industry and usually lead to great economic losses. Meanwhile, there is a global demand to avoid the highly emerging antibiotic resistance and antibiotic residues in edible meat. Whereas, the use of alternatives became of great priority, especially for those substances extracted from natural plant origin. The study aimed to evaluate the antibacterial effect of cinnamon oil as a herbal extract on different respiratory bacterial agents.
Materials and Methods: One hundred and fifty biological samples were collected through targeted surveillance for respiratory diseased poultry farms representing three governorates, from which bacterial isolation and identification, DNA sequencing of representative strains were performed. Furtherly, phenotypic and genotypic evaluation of the antibacterial effect of cinnamon oil was performed by minimum inhibitory concentration, agar disk diffusion, and virulence genes expression real-time polymerase chain reaction.
Results: Cinnamon oil gave rise to acceptable degrees of virulence genes downregulation of 0.15, 0.19, 0.37, 0.41, 0.77, and 0.85 for Staphylococcus aureus sed gene, Escherichia coli stx1 gene, Avibacterium paragallinarum HPG-2 gene, Pasteurella multocida ptfA gene, Mycoplasma gallisepticum Mgc2 gene, and Ornithobacterium rhinotracheale adk gene, respectively. Phenotypically, using agar disk diffusion assay and broth microdilution susceptibility, cinnamon oil showed also tolerable results as it stopped the growth of S. aureusE. coliP. multocida, and A. paragallinarum with varying zones of inhibition.
Conclusion: The encountered results declared the successful in vitro effect of cinnamon oil that recommends its application for living birds for future use as a safe antibacterial in the poultry industry.
Keywords: bacteria, cinnamon, expression, gene sequence, poultry, respiratory.

Comparing cytotoxicity of propoxur and Nepeta crispa (Lamiales: Lamiaceae) essential oil against invertebrate (Sf9) and vertebrate (L929) cell lines

Research (Published online: 04-11-2019)
3. Comparing cytotoxicity of propoxur and Nepeta crispa (Lamiales: Lamiaceae) essential oil against invertebrate (Sf9) and vertebrate (L929) cell lines
Amirhossein Zahirnia, Mitra Boroomand, Hassan Nasirian, Aref Salehzadeh and Sara Soleimani-Asl
Veterinary World, 12(11): 1698-1706
ABSTRACT
Background and Aim: Attempts to use the plant products are to be an appropriate option due to substantial concerns about human health and environmental problems of using synthetic pesticides. Therefore, the cytotoxicity of Nepeta crispa essential oil was compared with propoxur against invertebrate (Sf9) and vertebrate (L929) cell lines.
Materials and Methods: The cell lines of Sf9 and L929 which were derived from the ovary glands of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) and mouse fibroblast cells, respectively, were obtained from the National Cell Bank of Pasteur Institute of Iran. About a number of 2 × 103 cells were placed into the wells of 96-well plate experiments. Then, appropriate concentrations of essential oil of N. crispa plant and propoxur added to the wells. The cells were allowed to grow for 3-5 days and estimated the numbers of cells. The cells of control experiment wells contained only cells with dimethyl sulfoxide. All control and treatment experiments repeated at least four replicates.
Results: Propoxur had negative effects on the viability of both invertebrate (Sf9) and vertebrate (L929) cell lines. The cytotoxicity of propoxur against invertebrate (Sf9) and vertebrate (L929) cell lines was gradually increased in accordance with propoxur concentrations. The cytotoxicity of N. crispa essential oil against vertebrate (L929) cell line was gradually decreased in accordance with plant concentrations, while the cytotoxicity of N. crispa essential oil against invertebrate (Sf9) cell line was strongly increased in accordance with plant concentrations.
Conclusion: Plant essential oil not only had no negative effects but also had boosting effects on vertebrate cell viability. Essential oil of N. crispa plant had negative effects on invertebrate cell viability with the differences that the products derived from plants possessing of biodegradable and environmentally friendly derivatives, hydrolyzing rapidly in nature, and nearly having no destructive effects on environment, humans, or the mammals.
Keywords: biodegradable derivative, invertebrate cell line, plant essential oil, plant natural products, vertebrate cell line.

Sunday 3 November 2019

Phytogenic compounds do not interfere physiological parameters and growth performances on two Indonesian local breeds of ducks

Research (Published online: 04-11-2019)
2. Phytogenic compounds do not interfere physiological parameters and growth performances on two Indonesian local breeds of ducks
Ismoyowati Ismoyowati, Diana Indrasanti, Sigit Mugiyono and Mulyoto Pangestu
Veterinary World, 12(11): 1689-1697
ABSTRACT
Aim: The present study was to investigate the interaction between duck's breed and phytogenic compounds as feed additives in the diet on blood lipid and hematological profile, welfare, and growth performance.
Materials and Methods: A total of 200 male day-old local breed ducks (Tegal and Muscovy ducks) were used in this experiment. The first factor was duck breed and the second factor was different phytogenic compounds supplementation in the diet: Garlic, turmeric, ginger, and kencur, at 3% each. The observed variables were the blood lipid profiles comprise high-density lipoprotein (HDL), low-density lipoprotein, cholesterol total, triglyceride, blood parameters, welfare (heterophil/ lymphocyte [H/L] ratio), and growth performances (feed consumption, body weight gain, feed conversion ratio, and carcass percentage).
Results: The interaction between breed of ducks and phytogenic compounds had a significant effect on blood triglyceride, but no significant effect on the blood lipid profile, hematological parameters, and growth performances. While, phytogenic compounds in the diet had significant effects on the blood lipid profile, heterophil (H), lymphocyte (L), and H/L ratio of ducks. The breed factors affected HDL and growth performances. Muscovy duck had a higher HDL and growth performance compare to Tegal duck. Among those, garlic most effectively reduced triglyceride level in Tegal duck.
Conclusion: Phytogenic compounds 3% do not have a negative effect on the physiological parameters of ducks increase ducks welfare (H/L ratio), so it does not affect the growth performances of ducks. Muscovy duck had higher growth performances than Tegal ducks.
Keywords: blood lipid, growth performances, heterophil/lymphocyte ratio, Indonesian ducks, phytogenic compounds.

Histopathological changes of acetaminophen-induced liver injury and subsequent liver regeneration in BALB/C and ICR mice

Research (Published online: 04-11-2019)
1. Histopathological changes of acetaminophen-induced liver injury and subsequent liver regeneration in BALB/C and ICR mice
Fazil Muhammad-Azam, Saulol Hamid Nur-Fazila, Raslan Ain-Fatin, Mohamed Mustapha Noordin and Nurhusien Yimer
Veterinary World, 12(11): 1682-1688
ABSTRACT
Background and Aim: Laboratory mice are widely used as a research model to provide insights into toxicological studies of various xenobiotic. Acetaminophen (APAP) is an antipyretic and analgesic drug that is commonly known as paracetamol, an ideal hepatotoxicant to exhibit centrilobular necrosis in laboratory mice to resemble humans. However, assessment of histopathological changes between mouse strains is important to decide the optimal mouse model used in APAP toxicity study. Therefore, we aim to assess the histomorphological features of APAP-induced liver injury (AILI) in BALB/C and Institute of Cancer Research (ICR) mice.
Materials and Methods: Twenty-five ICR mice and 20 BALB/C mice were used where five animals as control and the rest were randomly divided into four time points at 5, 10, 24 and 48 hours post-dosing (hpd). They were induced with 500 mg/kg APAP intraperitoneally. Liver sections were processed for hematoxylin-eosin staining and histopathological changes were scored based on grading methods.
Results: Intense centrilobular damage was observed as early as 5 hpd in BALB/C as compared to ICR mice, which was observed at 10 hpd. The difference of liver injury between ICR and BALB/C mice is due to dissimilarity in the genetic line-up that related to different elimination pathways of APAP toxicity. However, at 24 hpd, the damage was markedly subsided and liver regeneration had taken place for both ICR and BALB/C groups with evidence of mitotic figures. This study showed that normal liver architecture was restored after the clearance of toxic insult.
Conclusion: AILI was exhibited earlier in BALB/C than ICR mice but both underwent liver recovery at later time points.
Keywords: acetaminophen, BALB/C, histopathology, institute of cancer research, liver injury, liver regeneration.

Wednesday 30 October 2019

Effect of shell as natural testosterone boosters in Sprague Dawley rats

Research (Published online: 30-10-2019)
22. Effect of shell as natural testosterone boosters in Sprague Dawley rats
Pudji Astuti, Claude Mona Airin, Sarmin Sarmin, Alfarisa Nururrozi and Sri Harimurti
Veterinary World, 12(10): 1677-1681
ABSTRACT
Aim: This study aimed to evaluate the effect of shell supplementation on the regulation of male reproduction in rats.
Materials and Methods: The zinc (Zn) level of shell from blood clam (Anadara granosa), green mussel (Perna viridis), and conch shell (Telescopium telescopium) was analyzed. The highest Zn content shell was fed to male Sprague Dawley rats for 0, 9, 30, and 50 days at the dose of either 0.09 mg/200 g BW or 0.18 mg/200 g BW. To determine the testosterone levels, blood was collected through the infraorbitalis sinus just before the rat was sacrificed. Testicular and brain were also collected for Cyp19 aromatase receptor analysis.
Results: The Zn level in the shell of blood clam, green mussel, and conch shell 61.55 mg/kg, 2.78 mg/kg, and 3.93 mg/kg, respectively. The testosterone level of T1 group receiving 0.18 mg/200 g BW for 0, 9, 30, and 50 days was 1.42±0.59, 2.15±1.58, 2.98±2.53, and 8.11±2.03 ng/mL, respectively. The testosterone level of T2 group receiving 0.09 mg/200 g BW for 0, 9, 30, and 50 days was 2.50±0.32, 1.25±0.60, 3.87±3.27, and 3.54±0.23 ng/mL, respectively. The T3 group receiving Na-CMC showed the level of testosterone at days 0, 9, 30, and 50 days was 0.77±0.22, 1.99±1.65, 4.12±0.07, and 2.19±1.30 ng/mL, respectively. Finally, the T4 group receiving Zn showed testosterone levels at days 0, 9, 30, and 50 days was 0.51±0.58, 2.24±3.16, 4.58±1.97, and 2.89±0.20 ng/mL, respectively. There was a significant difference (p<0.05) between the T1 group compared to the other groups. However, the absence of expression of Cyp19 aromatase both in Leydig cells and the brain indicated no conversion of testosterone to estradiol. To add, this finding showed the potential use of the shell to boost the testosterone level in male rats.
Conclusion: Shell acted as an aromatase blocker to boost the testosterone level in male rats. This also indicates its promising application in birds to manipulate the quality of song and feather.
Keywords: Cyp19, shell, testosterone, zinc.

Molecular and biological characterization of some circulating strains of Newcastle disease virus in broiler chickens from Eastern Saudi Arabia in 2012-2014

Research (Published online: 30-10-2019)
21. Molecular and biological characterization of some circulating strains of Newcastle disease virus in broiler chickens from Eastern Saudi Arabia in 2012-2014
Abdullah I. A. Almubarak
Veterinary World, 12(10): 1668-1676
ABSTRACT
Background and Aim: Newcastle disease (ND) is a worldwide poultry disease that is historically known to cause severe losses in the poultry industry. In the present study, attempts were made to characterize ND virus (NDV) recovered from broiler chickens in the Eastern Region of Saudi Arabia from January 2012 to March 2014.
Materials and Methods: Reverse transcription-polymerase chain reaction was used for the detection of NDV followed by partial sequencing of the fusion (F) gene. The intracerebral pathogenicity index (ICPI), mean death time (MDT), and complete sequencing of the hemagglutinin-neuraminidase (HN) gene were also used for further biological and molecular characterization.
Results: NDV was detected at a rate of 9.6% (11/115) of the tested flocks, most of which were vaccinated against ND. F gene-based phylogeny and motifs of the fusion protein cleavage site (FPCS) showed segregation of Saudi isolates into two groups. The first group contained 10 isolates and was located in genotype II with the lentogenic motif 112GRQGRL117 at the FPCS. The second group contained one isolate and was located in genotype VII with velogenic motif 112RRQKRF117. Further characterization using the ICPI and MDT of two representative isolates showed virulence of both tested isolates. Phylogenetic analysis of the HN gene showed close nucleotide identity between the two isolates. A BLAST search for sequences similar to HN gene sequences showed high identity with isolates from the surrounding region.
Conclusion: The present findings showed a low detection rate of NDV, possibly due to the wide application of vaccines, and the circulation of at least two NDV genotypes, II and VII, in the Eastern Region of Saudi Arabia. The present Saudi isolates may share common ancestors with isolates from the surrounding region.
Keywords: broiler chickens, Newcastle disease virus, Saudi Arabia.

Monday 28 October 2019

Protein metabolic changes and nucleolus organizer regions activity in the lymphocytes of neonatal calves during the development of respiratory diseases

Research (Published online: 28-10-2019)
20. Protein metabolic changes and nucleolus organizer regions activity in the lymphocytes of neonatal calves during the development of respiratory diseases
Elena Kalaeva, Vladislav Kalaev, Ksenia Efimova, Anton Chernitskiy and Vladimir Safonov
Veterinary World, 12(10): 1657-1667
ABSTRACT
Background and Aim: Calfhood disease is an important problem in dairy farming that could cause significant effects on heifer survival and productivity and has economic and welfare effects. Total protein concentration in the blood serum could be one of the predictors of bovine respiratory disease (BRD) in newborn calves. The number of active nucleolus organizers could be used to assess the viability of the protein synthesis system in cells and tissues. We aimed for a comparative assessment of the dynamics of the main indicators of protein metabolism and nucleolus organizer regions (NORs) activity in the lymphocytes of healthy calves (Group I) and calves with BRD (Group II) during the 1st month after birth.
Materials and Methods: This study included 30 calves of the red-motley Holstein breed. Venous blood samples were taken from all calves on the 1st, 7th, 14th, and 28th days after birth. Quantitative analysis of total protein (Serum total protein [STP]), immune globulin (Serum immune globulin [SIg]), urea, and creatinine in serum and transcriptionally active chromosome NORs in the interphase nuclei of lymphocytes was conducted using receiver operating characteristic analysis and factor analysis.
Results: In Group I, the STP levels decreased during the 1st month of life, and in Group II, the STP levels were variable. The STP levels in both groups remained within the reference intervals. During the first 2 weeks after birth, the calves' SIg fluctuated within the statistical error limits and did not significantly differ between the groups. On the 28th day, SIg increased in both the groups (by 42.8% for Group I and 33.7% for Group II). The creatinine concentration showed a decrease but did not go beyond the range of reference values. Urea concentration in Group I markedly decreased and remained below the reference values; it did not change in Group II over the entire observation period. The number of NORs in 1-day-old calves did not significantly differ between the groups and amounted to 2.43 in Group I and 2.59 in Group II. A significant increase in the number of active NORs was found in calves in both groups at the ages of 14 and 28 days. Early BRD predictors (at 1-14 days) could not be identified among the studied indicators. The urea and creatinine concentrations and the NOR activity on day 28 after birth could be late BRD predictors. Protein metabolism in the newborn calves' organisms is regulated by three types of factors: Maintenance of a constant protein concentration in the plasma, protein decomposition, and de novo synthesis.
Conclusion: There were no observed significant differences in the protein metabolism values and dynamics of indicators between healthy calves and calves with developed BRD. Alterations in the studied characteristics are the result, but not the cause of BRD. The increase in active NORs under BRD could be a favorable forecasting indicator. Protection against foreign protein and genetic material is a more important task for the organism than ensuring growth processes during the neonatal period.
Keywords: bronchopneumonia, calf, creatinine, nucleolus, serum immunoglobulin, serum total protein, urea.